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We analyze a multiscale operator decomposition finite element method for a conjugate
heat transfer problem consisting of a fluid and a solid coupled through a common bound-
ary. We derive accurate a posteriori error estimates that account for all sources of error, and
in particular the transfer of error between fluid and solid domains. We use these estimates
to guide adaptive mesh refinement. In addition, we provide compelling numerical evidence
that the order of convergence of the operator decomposition method is limited by the accu-
racy of the transferred gradient information, and adapt a so-called boundary flux recovery
method developed for elliptic problems in order to regain the optimal order of accuracy in
an efficient manner. In an appendix, we provide an argument that explains the numerical
results provided sufficient smoothness is assumed.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Multiscale operator decomposition is an attractive approach for computing complex phenomena involving multiple phys-
ical processes, multiple scales and/or multiple domains. As such, operator decomposition is ubiquitous in computational sci-
ence and engineering for multi-physics simulations. The general strategy is to decompose the problem into components
involving simpler physics over a relatively limited range of scales, discretize each component using appropriate numerical
methods at appropriate scales, and then to seek the solution of the entire system through an iterative procedure involving
solutions of the individual components. This approach is appealing because there is a good understanding of how to solve a
broad range of single physics problems accurately and efficiently, and because it provides a way to accommodate the multi-
ple scales characteristic of multi-physics problems.

A commonly occurring type of operator decomposition concerns problems in which multiple domains share a common
boundary and an iterative procedure is constructed whereby information is exchanged across this boundary at every
iteration. Here we consider multiscale operator decomposition for the solution of a conjugate heat transfer problem between
. All rights reserved.
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a heat conducting fluid and a solid. We model the temperature field in the solid using the heat equation and apply the Bous-
sinesq approximation within the fluid. The temperature fields in fluid and solid domains are coupled by imposing continuity
of temperature and heat flux across the common boundary. The solid and the fluid may have different thermal conductivities
and may be subject to different heat sources and boundary conditions. We allow the possibility that different scales and even
different numerical methods may be used to solve for the temperature field in the solid and to solve for the velocity and
temperature field in the fluid. Our focus is on the effect of such a multiscale operator decomposition on the accuracy of
the solution and on constructing accurate a posteriori error estimates which are sensitive to the effects of such decomposi-
tions. Adjoint-based a posteriori analysis provides a valuable tool for determining how specific terms in a computational
approximation generate and propagate error. We consider relatively small Reynolds numbers in order to ensure stable stea-
dy solutions and to avoid complications arising from the need to employ numerical stabilization techniques.

The solution of the fully coupled system can be obtained from the multiscale operator decomposition solution in the limit of
a (nominally infinite) fixed point iteration during which the current solution in one domain provides boundary conditions for
the new solution in the other domain. Adjoint-based variational analysis will be applied to carefully analyze the sources of
error. Our goal is to estimate the error in a quantity of interest determined by a functional of the temperature field, and to
use this estimate to guide adaptive mesh refinement in order to achieve a user-specified accuracy. We perform an a posteriori
analysis to obtain error estimates based on the standard techniques using variational analysis, residuals and the adjoint prob-
lem [2,8,20,23,18,26]. The standard approach is modified to account for the fact that numerical errors in the solution of each
component are propagated to the other component through the boundary conditions, and from one step of the iterative pro-
cedure to the next. Both effects are characteristic of operator decomposition and require extensions of the usual a posteriori
analysis techniques, see [22,19,11,12,29,28].

First, a simplified problem will be presented as a motivational example. We then consider a more sophisticated problem
involving the Newtonian flow in a two-dimensional channel past a heated cylinder which is a reasonable, prototypical exam-
ple of a class of problems commonly solved by operator decomposition. The adjoint analysis clearly identifies a term in the
error representation formula corresponding to the transfer of information across the boundary. This term can dominate the
error and as we demonstrate, can lead a standard mesh refinement strategy to highly refine near the boundary. We then
explain why the ‘‘recovered boundary flux” technique developed by Wheeler [33] and Carey [10,9] removes the transfer er-
ror and results in significantly different refinement strategies which do not require special refinement near the boundary.
Further, numerical results suggest that a straightforward approach to operator decomposition causes a loss in the order
of convergence. For our simpler motivational problem, we demonstrate that the ‘‘recovered boundary flux” technique pro-
vides an inexpensive, nonintrusive way to remedy the loss of order. These examples indicate that an adjoint-based error
analysis of operator decomposition methods can not only identify and isolate the mechanisms that generate and propagate
the largest errors, but it can also motivate alternative approaches to address the leading sources of error.

In Section 2, we present a model for the flow of a thermally conducting Newtonian fluid past a cylinder and introduce the
general iterative multiscale operator decomposition technique. The multiscale operator decomposition finite element meth-
od is presented in Section 3. In Section 4 we provide a simple motivational example that illustrates the loss of order of con-
vergence due to operator decomposition. Error estimates are obtained from a detailed a posteriori error analysis in Section 5
and used to construct an adaptive mesh refinement strategy. We describe the recovered boundary flux method in Section 6
and its effect on transfer and projection errors. We then reconsider the motivational example of Section 4 and demonstrate
the effect of the recovered boundary flux method on convergence rate. The main numerical results for our prototypical
example of operator decomposition is addressed in Section 7. Our conclusions are presented in Section 8.

For elliptic problems, it is possible to carry out a rigorous analysis showing that boundary flux method recovers optimal con-
vergence in the L2 norm [22]. In Appendix A, we briefly describe how this analysis can be extended to the coupled fluid–solid
system, provided sufficient smoothness is assumed. The motivation for such a result is that we wish to verify that the a posteriori
estimate is sensitive to the positive effects of flux recovery and hence avoids calling for unnecessary mesh refinement.
2. Description of flow of a thermally conducting fluid past a cylinder

We consider the steady flow of a heat conducting Newtonian fluid past a solid cylinder as shown in Fig. 1.
d L

u = v = 0

u = v = 0

u = v = 0

Fig. 1. Computational domain for flow past a cylinder.
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We solve the heat equation in the solid and the equations governing the conservation of momentum, mass and energy in
the fluid, where we apply the Boussinesq approximation. The temperature field is advected by the fluid and couples back to
the momentum equations through the buoyancy term. The goal of the approximate solution is to compute a specified quan-
tity of interest accurately.

2.1. The conjugate heat transfer problem

Let XS and XF be polygonal domains in R2 with boundaries @XS and @XF intersecting along an interface CI ¼ @XS \ @XF .
The complete coupled problem is
�lDuþ q0 u � rð Þuþrpþ q0bTF g ¼ q0 1þ bT0ð Þg; x 2 XF ;

�r � u ¼ 0; x 2 XF ;

�kFDTF þ q0cpðu � rTFÞ ¼ QF ; x 2 XF ;

TS ¼ TF ;

kFðn � rTFÞ ¼ kSðn � rTSÞ;

�
x 2 CI;

�kSDTS ¼ Q S; x 2 XS;

8>>>>>>>><
>>>>>>>>:

ð1Þ
where q0 and T0 are reference values for the density and temperature, respectively, l is the molecular viscosity, b is the coef-
ficient of thermal expansion, cp is the specific heat, kF and kS are the thermal conductivities of the fluid and solid, respec-
tively, QF and QS are source terms and n is the unit normal vector directed into the fluid.

We define Cu;D and Cu;N to be the boundaries on which we apply Dirichlet and Neumann conditions for the velocity field,
respectively, and set
u ¼ gu;D; x 2 Cu;D;

l@u=@n ¼ gu;N ; x 2 Cu;N:

(

Similarly, we define CTF ;D; CTF ;N; CTS ;D and CTS ;N to be the boundaries on which we impose Dirichlet and Neumann conditions
for the temperature fields in the fluid and the solid, respectively, and set
TF ¼ gTF ;D; x 2 CTF ;D;

kFðn � rTFÞ ¼ gTF ;N; x 2 CTF ;N;

TS ¼ gTS ;D; x 2 CTS ;D;

kSðn � rTSÞ ¼ gTS ;N ; x 2 CTS ;N :

8>>><
>>>:
To simplify the discussion, we assume that these boundary conditions can be interpolated exactly in the finite element space.

2.2. An iterative operator decomposition problem

Instead of approximating the solution of the fully coupled system (1) directly, we solve an ‘‘analytic” operator decompo-
sition problem. Assuming that we have an initial guess, Tf0gF , for the Dirichlet data along CI , we solve the iterative problem
presented in Algorithm 1.

Algorithm 1. Iterative Operator Decomposition Problem

k = 0

while (kTfkgS � pSTfkgF kCI
> TOL) do

(a) k = k+1
(b) Given Tfk�1g

F on CI , compute TfkgS 2 XS by solving
�kSDTfkgS ¼ Q S; x 2 XS

TfkgS ¼ Tfk�1g
F ; x 2 CI;

(
ð2Þ

and boundary conditions on CTS ;D; CTS ;N .
(c) Given TfkgS , compute ufkg; pfkg; TfkgF 2 XF by solving
�lDufkg þ q0ðufkg � rÞufkg þ rpfkg þ q0bTfkgF g ¼ f ; x 2 XF

�r � ufkg ¼ 0; x 2 XF

�kFDTfkgF þ q0cpðufkg � rTfkgF Þ ¼ Q F ; x 2 XF

kFðn � rTfkgF Þ ¼ kSðn � rTfkgS Þ; x 2 CI:

8>>>><
>>>>:

ð3Þ

and boundary conditions on Cu;D; Cu;N; CTF ;D and CTF ;N .

end while
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Assuming that the iteration converges, we obtain the solution of the global problem (1) in the limit of an infinite number
of iterations. If we end the iteration after a finite number of steps, then there is a difference between the solutions of the
global and operator decomposition iteration problem, even without introducing numerical solution error. Hence, an accurate

a posteriori error analysis must take into account the errors introduced by numerical solution of the component problems (2)
and (3) and the effects of finite iteration. Further, when we introduce numerical methods, we will see additional sources of
error arising from the ‘‘transfer” of information between the component problems.

The iterative operator decomposition problem Algorithm 1 is relatively simple, and there are many other possible ver-
sions. This simple iterative scheme may not converge for a particular model problem. In general, the convergence depends
on the values of kS and kF along the interface and the geometry of each region [24,31,35,22]. As an alternative, we can extend
the analysis to a simple relaxation scheme: We choose a 2 ½0;1Þ and update the Dirichlet interface values with
TfkgF ¼ aTfk�1g
F þ ð1� aÞTfk�1g

S : ð4Þ
By reformulating the fixed point iteration as a root finding problem, other iterative solutions techniques such as precondi-
tioned Newton–Krylov methods [36,21] may also be used to solve operator decomposition problems.
3. The finite element discretization

We begin with the weak formulation of the global problem (1) in order to introduce notation and various spaces.
3.1. Weak formulation of the global problem

Let L2ðXÞ denote the space of square integrable functions on X with inner product ð�; �ÞX and norm k � kX, or simply ð�; �Þ
when the domain is clear. We use HsðXÞ to denote the Sobolev space with real index s associated with the norm k � kX;s
and seminorm j � jX;s [1,6] with the obvious generalization to vector valued functions.

The weak formulation of (1) seeks u 2 VF ; p 2 L2
0ðXFÞ; TF 2WF and TS 2WS such that TF ¼ TS on CI and
a1ðu;vÞ þ c1ðu;u;vÞ þ bðv ;pÞ þ dðTF ;vÞ ¼ ðf ;vÞ;
bðu; qÞ ¼ 0;
a2ðTF ;wFÞ þ c2ðu; TF ;wFÞ þ a3ðTS;wSÞ ¼ ðQ F ;wFÞ þ ðQ S;wSÞ;

8><
>: ð5Þ
for all v 2 VF;0; q 2 L2
0ðXFÞ; wF 2WF;0 and wS 2WS;0 with wF ¼ wS on CI , where
a1ðu;vÞ ¼
Z

XF

lðru : rvÞdx; a2ðTF ;wFÞ ¼
Z

XF

kFðrTF � rwFÞdx;

a3ðTS;wSÞ ¼
Z

XS

kSðrTS � rwSÞdx; bðv; qÞ ¼ �
Z

XF

ðr � vÞqdx;

c1ðu;v ; zÞ ¼
Z

XF

q0ðu � rÞv � z dx; c2ðu; T;wÞ ¼
Z

XF

q0cpðu � rTÞwdx;

dðT;vÞ ¼
Z

XF

q0bTg � v dx; f ¼ q0ð1þ bT0Þg:
Here
VF ¼ fv 2 H1ðXFÞjv ¼ gu;D on Cu;Dg; VF;0 ¼ fv 2 VF jv ¼ 0 on Cu;Dg;
WF ¼ fw 2 H1ðXFÞjw ¼ gTF ;D on CTF ;Dg; WF;0 ¼ fw 2WF jw ¼ 0 on CTF ;Dg;
WS ¼ fw 2 H1ðXSÞjw ¼ gTS ;D on CTS ;Dg; WS;0 ¼ fw 2WSjw ¼ 0 on CTS ;Dg;
and
L2
0ðXÞ ¼ v 2 L2ðXÞ

Z
X

v dx
���� ¼ 0

� �
;

and in particular,
Z ¼ L2
0ðXFÞ:
The continuity of thermal flux across the interface CI is satisfied in the 3rd (and final) equation of (5) as can be seen by inte-
gration by parts. We assume that the source terms and the boundary data are sufficiently small and the molecular viscosity l
and thermal conductivities kF and kS are sufficiently large so that (5) admits a regular weak solution.
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3.2. Finite element discretization of the operator decomposition problem

Let T F;h and T S;h be locally quasi-uniform triangulations of XF and XS, respectively. We do not assume that the triangu-
lations on either side of CI are aligned.

We use the piecewise polynomial spaces
Vh
F ¼ v 2 VF jv continuous on XF ; v i 2 P2ðKÞ for all K 2 T F;h

n o
;

Zh ¼ z 2 Zjz continuous on XF ; z 2 P1ðKÞ for all K 2 T F;h

n o
;

Wh
F ¼ w 2WF jw continuous on XF ; w 2 P2ðKÞ for all K 2 T F;h

n o
;

Wh
S ¼ w 2WSjw continuous on XS; w 2 P2ðKÞ for all K 2 T S;h

n o
;

and the associated subspaces
Vh
F;0 ¼ v 2 Vhjv ¼ 0 on Cu;D

n o
;

Wh
F;0 ¼ w 2Wh

F jw ¼ 0 on CTF ;D

n o
;

Wh
S;0 ¼ w 2Wh

S jw ¼ 0 on CTS ;D and w ¼ 0 on CI

n o
;

where PqðKÞ denotes the space of polynomials of degree q on an element K. Note that functions in Wh
S;0 are required to be zero

on CI , while functions in Wh
F;0 are not required to vanish on the interface between the fluid and solid. We let pV ; pWF ; pWS

and pZ be projections into Vh
F , Wh

F ; Wh
S and Zh, respectively, and also use pWF and pWS to denote projections into Wh

F and Wh
S ,

respectively along the interface CI . Projecting information between discretizations is a non-trivial matter, especially in three
dimensions or if the discretized representations of the geometry are not the same. For simplicity, we assume that the geo-
metric representation of the interface between the solid and the fluid is the same for each discretization as shown in Fig. 2.
We have chosen Vh

F and Zh to be the Taylor–Hood finite element pair which is known to satisfy the discrete inf–sup condition
inf
q2Zh

sup
v2Vh

F

bðv ; qÞ
kvk1 � kqk0

P b > 0: ð6Þ
The multiscale Operator Decomposition Finite Element Method corresponding to Algorithm 1 is provided in Algorithm 2.

Algorithm 2. Multiscale Operator Decomposition Finite Element Method: OD-FEM

k = 0

while (kTfkgS � pSTfkgF kCI
> TOL) do

(a) k = k+1
Find TfkgS;h 2Wh

S such that TfkgS;h ¼ pWS Tfk�1g
F;h along the interface CI and
a3ðTfkgS;h ;wÞ ¼ ðQ S;wÞ; for all w 2Wh
S;0; ð7Þ
(c) Find ufkgh 2 Vh
F ; pfkgh 2 Zh and TfkgF;h 2Wh

F such that
a1ðufkgh ;vÞ þ c1ðufkgh ;ufkgh ;vÞ þ bðv ;pfkgh Þ þ dðTfkgF;h ;vÞ ¼ ðf ;vÞ;

bðufkgh ; qÞ ¼ 0;

a2ðTfkgF;h ;wÞ þ c2ðufkgh ; TfkgF;h ;wÞ ¼ ðQ F ;wÞ � ðvfkg;wÞCI
;

8>><
>>: ð8Þ

for all v 2 Vh
F;0; q 2 Zh; w 2Wh

F;0 and vfkg ¼ kSðn � rTfkgS;h Þ.

end while
4. Motivational example illustrating loss of order

We apply Algorithm 2 to the steady flow of a Newtonian fluid in a two-dimensional domain connected along one bound-
ary to a solid which is heated from below as shown in Fig. 3.

The temperature is defined to be 1 along y ¼ 0 and 0 along y ¼ 3 with adiabatic boundary conditions on the remaining
outer boundaries. Continuity of temperature and normal heat flux are imposed at the interface. We set u � n ¼ 0 along the
fluid boundaries. The thermal conductivities are kF ¼ 1 and kS ¼ expð1þ 0:5 sinðpxÞÞ, which are chosen to give a smooth
solution. The x-dependence of the thermal conductivity in the solid ensures that the interface between the solid and the fluid
is not an isothermal surface. This in turn implies that for any values of the temperature gradient there is not a ‘‘conducting”
solution (non-convecting solution) for which the velocity field is identically zero and the buoyancy force is exactly balanced
by a vertical gradient in the pressure field. The (non-zero) velocity fields are given in Fig. 4.



Fluid

Solid
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Fig. 3. Computational domain for motivational example.

Fig. 2. Two examples of the geometric representation of the fluid–solid interface.

Fig. 4. Fluid velocities for the motivational example.
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We solve the problem iteratively using vfkg ¼ kSðn � rTfkgS;h Þ in Eq. (8) and compute a reference solution with a higher order
method on the same mesh. In Table 1, we compare the L2 errors in the velocity, pressure and temperature fields on a series of
uniform meshes that align along the interface CI .

We observe that the pressure field converges at the optimal quadratic rate. However, the velocities and the temperature
fields converge at a suboptimal quadratic rate, rather than at the expected cubic rate. This loss of order is a consequence of
the operator decomposition. The computed boundary flux obtained from the finite element solution is one order less accu-
rate than the solution itself and this error pollutes the rest of the computation.

This loss of order is a general phenomena affecting finite element solutions of coupled problems that include passing of
flux information across a boundary. There are some simple situations in which the flux values can be represented exactly in
the finite element space, but this is fairly rare. Given the many sources of error in such computations, the loss of order of
convergence may be observed only for fairly refined discretizations [22].
5. A posteriori error analysis of OD-FEM

To estimate the error of the multi-discretization operator decomposition finite element approximation, we apply a pos-
teriori techniques based on variational analysis and the adjoint problem. We begin by discussing one possible formulation of



Table 1
Mesh sizes, number of elements, and L2 errors for the motivational example using the finite element flux.

h NELEM Fluid temperature Solid temperature x-Velocity y-Velocity Pressure

1/2 120 2.22E�3 1.67E�3 2.02E�4 2.47E�4 2.39E�1
1/4 480 7.54E�4 5.24E�4 5.80E�5 5.67E�5 7.99E�2
1/8 1920 1.25E�4 9.70E�5 2.20E�5 1.38E�5 1.83E�2
Conv. Rates 2.07 2.05 1.60 2.08 1.85
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an adjoint problem for the Boussinesq equations. Since these are nonlinear, there is not a unique adjoint problem. The ad-
joint problem for the heat equation component follows standard definitions.

5.1. The adjoint to the Boussinesq equations

Defining the adjoint to the Boussinesq operator,
Bðu; p; TÞ ¼
lDuþ q0 u � rð Þuþrpþ q0bTF g

�r � u
�kFDTF þ q0cpðu � rTFÞ

0
B@

1
CA;
is complicated by the fact that it is nonlinear. In general, there is not a unique adjoint associated with a nonlinear operator.
However, we can use linearization to define an adjoint for the purposes of error analysis. Let uh; ph and Th be approximation
to u; p and T, respectively and define
e ¼ ðu� uh;p� ph; T � ThÞ:
Formally, we define the linearized adjoint operator, B�, such that
Bðu; p; TÞ;/ð Þ � Bðuh;ph; ThÞ;/ð Þ ¼ BðeÞ;/
� �

¼ e;B�ð/Þ
� �

;

where the linearized operator, B, is defined by
BðeÞ ¼
Z 1

0
B0 suþ ð1� sÞuh; spþ ð1� sÞph; sT þ ð1� sÞThð Þeds
where
B0ðu; p; TÞ ¼ @B
@u
ðu;p; TÞ @B

@p
ðu;p; TÞ @B

@T
ðu; p; TÞ

� �>
:

We write the formal adjoint to the Boussinesq equations in strong form as
�lD/þ c�1ð/Þ þ rzþ c�2uðhÞ ¼ wu; x 2 X;

�r � / ¼ wp; x 2 X;

�kFDhþ c�2TðhÞ þ q0bðg � /Þ ¼ wT ; x 2 X;

8><
>: ð9Þ
with the adjoint boundary conditions
/ ¼ 0; x 2 Cu;D;

l@/=@n ¼ 0; x 2 Cu;N ;

h ¼ 0; x 2 CTF ;D

kFðn � rhÞ ¼ 0; x 2 CTF ;N;

8>>><
>>>:

ð10Þ
where
c�1ð/Þ ¼ q0
1
2
ðruÞT þ 1

2
ðruhÞT

� �
� /� q0

1
2

uþ 1
2

uh

� �
� r/� q0 r �

1
2

uþ 1
2

uh

� �� �
/;

c�2uðhÞ ¼ q0cpr
1
2

T þ 1
2

Th

� �
h;

c�2TðhÞ ¼ �q0cp
1
2

uþ 1
2

uh

� �
� rh� q0cp r �

1
2

uþ 1
2

uh

� �� �
h:
The terms wu; wp and wT on the right hand side of the adjoint to the Boussinesq operator (9) are chosen based on the linear
functional of the error in which we are interested. For example, if we are interested in a linear functional of the error based
on the velocity field only, then we define wu according to this linear functional and set wp ¼ wT ¼ 0. Similarly, if we are inter-
ested in the error in the temperature field alone, then we set wT as appropriate and wu ¼ 0; wp ¼ 0.
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Remark 5.1. In practice we cannot use the true adjoint (9) since the exact solution is unknown. We therefore linearize the
nonlinear operator around the approximate solutions and compute
�lD/� q0uh � r/þ q0 ðruhÞT � /� ðr � uhÞ/
	 


þrzþ ðq0cprThÞh ¼ wu;

�r � / ¼ wp;

�kFDh� q0cpuh � rh� q0cpðr � uhÞhþ q0bðg � /Þ ¼ wT ;

8>><
>>: ð11Þ
with the same adjoint boundary conditions.
The difference between the solution of (9) and the solution of (11) can be viewed as a higher order expression in the error

[3,2].
5.2. The adjoint to the conjugate heat transfer problem

We define
eu ¼ u� ufkgh ; ep ¼ p� pfkgh ; eTF ¼ TF � TfkgF;h and eTS ¼ TS � TfkgS;h :
The adjoint boundary value problem for the quantity of interest
ðw; eÞ ¼ ðwu; euÞXF
þ ðwp; epÞXF

þ ðwTF
; eTF ÞXF

þ ðwTS
; eTS ÞXS
for the coupled problem (1) is
�lD/þ c�1ð/Þ þ rzþ c�2uðhFÞ ¼ wu; x 2 XF ;

�r � / ¼ wp; x 2 XF ;

�kFDhF þ c�2TðhFÞ þ q0bðg � /Þ ¼ wTF
; x 2 XF ;

hF ¼ hS;

kFðn � rhFÞ ¼ kSðn � rhSÞ;

�
x 2 CI;

�kSDhS ¼ wTS
; x 2 XS;

8>>>>>>>><
>>>>>>>>:

ð12Þ
with adjoint boundary conditions
/ ¼ 0; x 2 Cu;D;

l @/
@n ¼ 0; x 2 Cu;N;

hF ¼ 0; x 2 CTF ;D;

kFðn � rhFÞ ¼ 0; x 2 CTF ;N;

hS ¼ 0; x 2 CTS ;D;

kSðn � rhSÞ ¼ 0; x 2 CTS ;N :

8>>>>>>>><
>>>>>>>>:

ð13Þ
We solve (12) numerically using the approximate Boussinesq adjoint (11) and an iterative operator decomposition approach
as for the forward problem. These iterations are completely independent of the forward iterations. We note that the adjoint
problem is a new differential equation with its own numerical solution requirements. In particular, we want to compute the
interpolation error /�Ph/ arising from Galerkin orthogonality which requires solving the adjoint system (12) with a higher
order finite element method. Since the adjoint problem is linear, the cost in solving the adjoint problem is approximately the
same as taking one Newton step of the forward problem with a higher order method using the previously computed lower
order solution as an initial guess. Solving the adjoint problem provides an accurate quantification of the effects of stability on
error as we show in Section 5.3.

5.3. An error representation for the iterative procedure

We derive an error representation formula (15) that holds for the basic scheme (2), (3), the weighted relaxation technique
(4), and when using the post-processed flux (21). In the discussion below, we use vfkgh to denote the value of the normal flux
passed at the kth iteration from XS to XF .

To begin, we multiply the system (12) by e and apply the divergence theorem, noting that hF ¼ hS and
kFðn � rhFÞ ¼ kSðn � rhSÞ along CI , to obtain
ðw; eÞ ¼ a1ðeu;/Þ þ c1ðu;u;/Þ � c1ðufkgh ;ufkgh ;/Þ þ bð/; epÞ þ dðeTF ;/Þ þ bðeu; zÞ þ a2ðeTF ; hFÞ þ c2ðu; TF ; hFÞ

� c2ðufkgh ; TfkgF;h ; hFÞ þ a3ðeTS ; hSÞ þ TfkgS;h ; kSðn � rhSÞ
	 


CI

� TfkgF;h ; kFðn � rhFÞ
	 


CI

:

Observe that the test space Wh
S;0 consists of functions that are zero along the interface, while in general, hS is not zero along

CI . This means that the projection of hS into Wh
S;0 cannot be the interpolant. We define a new projection p0

WS
: H2 !Wh

S;0 such
that for any node xi
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p0
WS

hSðxiÞ ¼
pWS hSðxiÞ; xi R CI;

0; xi 2 CI:

�
ð14Þ
Using the projection (14) in the Galerkin orthogonality relation, we have
ðw; eÞ ¼ f ;/� pV/ð Þ � a1ðufkgh ;/� pV/1Þ � c1ðufkgh ;ufkgh ;/� pV/Þ � bð/� pV/;phÞ � dðTfkgF;h ;/� pV/Þ � bðufkgh ; z� pZzÞ

þ QF ; hF � pWF hF
� �

� a2ðTfkgF;h ; hF � pWF hFÞ � c2ðufkgh ; TfkgF;h ; hF � pWF hFÞ þ Q S; hS � p0
WS

hS

	 

� a3ðTfkgS;h ; hS � p0

WS
hSÞ

þ TfkgS;h � TfkgF;h ; kSðn � rhSÞ
	 


CI

þ vfkgh ;pWF hF

	 

CI

: ð15Þ
Next, we define p@hS ¼ pWS hS � p0
WS

hS which is non-zero only near the interface due to the definition of p0
WS

hS. Substituting
p0

WS
hS ¼ pWS hS � p@hS gives
Q S; hS � p0
WS

hS

	 

� a3ðTfkgS;h ; hS � p0

WS
hSÞ ¼ Q S; hS � pWS hS

� �
� a3ðTfkgS;h ; hS � pWS hSÞ � QS;p@hSð Þ þ a3ðTfkgS;h ;p@hSÞ:
Finally, we define rfkg such that
� rfkg;p@hS
� �

CI
¼ QS;p@hSð Þ � a3ðTfkgS;h ;p@hSÞ: ð16Þ
Defining the quantity rfkg above enables us to write the full error representation in the form presented in Theorem 5.1 be-
low, in which each of the sources of error are clearly identified. In Section 6, we will see that the definition of rfkg coincides
with an existing flux recovery procedure.

Theorem 5.1. The errors eu ¼ u� ufkgh ; ep ¼ p� pfkgh ; eTF ¼ TF � TfkgF;h and eTS ¼ TS � TfkgS;h satisfy
ðw; eÞ ¼ f ;/� pV/ð Þ � a1ðufkgh ;/� pV/Þ � c1ðufkgh ;ufkgh ;/� pV/Þ � bð/� pV/; phÞ � dðTfkgF;h ;/� pV/Þ � bðufkgh ; z

� pZzÞ þ Q F ; hF � pWF hF
� �

� a2ðTfkgF;h ; hF � pWF hFÞ � c2ðufkgh ; TfkgF;h ; hF � pWF hFÞ þ Q S; hS � pWS hS
� �

� a3ðTfkgS;h ; hS � pWS hSÞ þ TfkgS;h � TfkgF;h ; kSðn � rhSÞ
	 


CI

þ vfkgh ;pWF hF

	 

CI

� rfkg;pWS hS
� �

CI
: ð17Þ
The error comprises four components arising due to discretization errors in the momentum, continuity and energy equa-
tions in the fluid and solid, iterative component, and a component reflecting the error arising from the transfer of derivative
information. Specifically, they are as follows.

(1) The discretization error in the momentum equations is
ðf ;/� pV/Þ � a1ðufkgh ;/� pV/Þ � c1ðufkgh ;ufkgh ;/� pV/Þ � bð/� pV/; phÞ � dðTfkgF;h ;/� pV/Þ:
(2) The discretization error in the continuity equation is
�bðufkgh ; z� pZzÞ:
(3) The discretization error in the energy equation in the fluid is
ðQ F ; hF � pWF hFÞ � a2ðTfkgF;h ; hF � pWF hFÞ � c2ðufkgh ; TfkgF;h ; hF � pWF hFÞ:
(4) The discretization error in the energy equation in the solid is
ðQ S; hS � pWS hSÞ � a3ðTfkgS;h ; hS � pWS hSÞ:
(5) The iteration error is
ðTfkgS;h � TfkgF;h ; kSðn � rhSÞÞCI
:

(6) The transfer error is
ðvfkgh ;pWF hFÞCI
� ðrfkg;pWS hSÞCI

:

Each of these error components may be estimated independently. The iteration error can be further decomposed as
TfkgS;h � TfkgF;h ; kSðn � rhSÞ
	 


CI

¼ TfkgS;h � pSTfkgF;h ; kSðn � rhSÞ
	 


CI

þ pSTfkgF;h � TfkgF;h ; kSðn � rhSÞ
	 


CI

;

which represents an iteration error and a projection error. Obviously the choice of derivative information, vfkgh that is trans-
ferred from XS to XF has a significant impact on the transfer error. We return to this issue in Section 6.



4152 D. Estep et al. / Journal of Computational Physics 229 (2010) 4143–4158
5.4. Adaptive refinement

We employ the standard ‘‘optimization framework” based on the Principle of Equidistribution to guide adaptive mesh
refinement [16,17,3,2]. This approach is based on a error bound written as a sum of positive element contributions. A cal-
culus of variations argument shows that the optimal mesh is obtained when the element contributions are equal, leading
to the strategy of refining some fraction of elements with the largest element contributions at each refinement stage. In prac-
tice, we compute an element tolerance by taking the global tolerance and dividing by the number of elements, then refine
some fraction of those elements whose element contribution is larger than the local tolerance.

We obtain the required error bound from the a posteriori error representation (17) by writing each term in the represen-
tation as a sum of integrals over the elements and then inserting norms. This removes cancelation of errors between ele-
ments, which is required for the standard argument about obtaining an optimal mesh. The local error indicator on an
element K 2 T F is
gK;S ¼ ðf ;/� pV/ÞK � a1ðufkgh ;/� pV/ÞK � c1ðufkgh ;ufkgh ;/� pV/ÞK � bð/� pV/;phÞK � dðTfkgF;h ;/� pV/ÞK
���
� ufkgh ; z� pZzÞK þ ðQ F ; hF � pWF hFÞK � a2ðTfkgF;h ; hF � pWF hFÞK � c2ðufkgh ; TfkgF;h ; hF � pWF hFÞK
	 ��� ð18Þ
and an indicator on K 2 T S,
gK;S ¼ ðQ S; hS � pWS hSÞK � a3ðTfkgS;h ; hS � pWS hSÞK þ vfkgh ;pWS hS

	 

CI

� rfkg;pWS hS
� �

@K\CI

����
����; ð19Þ
with the obvious notation for localizing the forms to an element K.
Note that we dropped the projection error and the iteration error terms from the element contribution expression.

The reason is that even if these expressions are large, it is not clear that refining the mesh will reduce these sources
of error.

Note that the number of degrees of freedom in the discretization for the two components in the coupled Boussinesq sys-
tem (1) are very different. The solid discretization contains only a temperature variable, while the fluid discretization con-
tains a temperature variable as well as two (or three) velocity variables and a pressure variable. As a consequence, refining
the fluid mesh requires a greater increase in the computational resources than refining the solid mesh. Consequently, we
modify the standard approach to more efficiently balance the computational work between the physical components. Let
TOL denote the global error tolerance, and let NF and NS be the number of degrees of freedom associated with the fluid mesh
and the solid mesh, respectively. We allocate the global error to each component using
TOLF ¼
NF

NF þ NS
TOL and TOLS ¼

NS

NF þ NS
TOL;
and refine each mesh based on these component tolerances. These allocations are dynamically modified for each iteration of
the refinement algorithm.
6. Flux correction

The numerical example in Section 4 suggests that a straightforward operator decomposition can result in a loss of order of
convergence. To mitigate this effect, we use a post-processing technique developed by Wheeler [33] and Carey [10,9] orig-
inally to recover boundary flux values for finite element solutions of elliptic problems.

We define the set of elements in T S;h that intersect the boundary by
T CI
S;h ¼ fK 2 T S;hjK \ CI – ;g;
and the corresponding space
Rh ¼ v 2 P2ðKÞ with K 2 T CI
S;h; vðgiÞ ¼ 0 if gi R CI

n o
;

where fgig denotes the nodes of element K, so the degrees of freedom correspond to the nodes on the boundary. We seek
rfkg 2 Rh satisfying
� rfkg; v
� �

CI
¼ Q S; vð Þ � a3ðTfkgS;h ;vÞ; for all v 2 Rh; ð20Þ
where TfkgS;h solves (7). This definition of rfkg is equivalent to the earlier definition (16). Green’s identity implies that rfkg gives
an approximation to the normal flux on the boundary which is relatively inexpensive to compute.

In Algorithm 2, we solve (7) and compute the recovered flux by post-processing the finite element solution, TfkgS;h . Next, we
set vfkg ¼ rfkg in the weak form of the energy equation in (8), i.e. we solve
a2ðTfkgF;h ;wÞ þ c2ðufkgh ; TfkgF;h ;wÞ ¼ ðQ F ;wÞ � ðrfkg;wÞCI
: ð21Þ



Table 2
Mesh sizes, number of elements and L2 errors for the motivational example using the recovered flux.

h NELEM Fluid temperature Solid temperature x-Velocity y-Velocity Pressure

1/2 120 3.55E�4 3.12E�4 1.74E�4 2.34E�4 2.55E�1
1/4 480 5.11E�5 5.22E�5 1.93E�5 2.82E�5 7.73E�2
1/8 1920 6.95E�6 6.65E�6 2.43E�6 3.57E�6 1.91E�2
Conv. Rates 2.84 2.78 3.08 3.02 1.87
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In general, the accuracy of the recovered boundary flux approximation depends on the regularity of an associated Green’s
function [25,34]. However regardless of accuracy, post-processing the solution using the recovered boundary flux leads to
a cancelation of the ‘‘transfer error” term in the a posteriori error representation formula for the post-processed solution,
see Section 6.1. So in this situation, use of the recovered flux is motivated by a fortunate cancelation of errors and the accu-
racy of the recovered boundary flux is only of peripheral interest.

This flux recovery approach is closely related to the Steklov–Poincare projection [30] commonly used by nonoverlapping
domain decomposition methods to compute the interface Schur complement operator [4,5,32]. The recovered flux is the nat-
ural approximation of the flux resulting from the condensation of the unknowns on the interface. The a posteriori analysis
outlined in Appendix A suggests that an inaccurate approximation of the Steklov–Poincare operator results in a loss of order
affecting all components of the multi-physics problem. We can prove this in the case of coupled elliptic problems [22].

6.1. Analysis of the transfer error

Recall that the transfer error is given by,
vfkgh ;pWF hF

	 

CI

� rfkg;pWS hS
� �

CI
:

Clearly, the choice of vfkgh affects this component of the error.
Suppose we set vfkgh ¼ kSðn � rTfkgS;h Þ, i.e. the finite element flux. Then
ðvfkgh ;pWF hFÞCI
� ðrfkg;pWS hSÞCI

¼ kSðn � rTfkgS;h Þ � rfkg;pWF hF

	 

CI

þ rfkg;pWF hF � pWS hS
� �

CI
;

which represents a transfer error and a projection error. If the transfer error is sufficiently large, it may dominate the
estimate.

On the other hand, suppose we set vfkgh ¼ rfkg, i.e. the recovered flux. Then
vfkgh ;pWF hF

	 

CI

� rfkg;pWS hS
� �

CI
¼ rfkg;pWF hF � pWS hS
� �

CI
;

which represents only a projection error with no transfer error.

6.2. Motivational problem revisited

We reconsider the steady flow of a Newtonian fluid in a rectangular domain that is connected along one boundary to a
solid that is heated from below as shown in Fig. 3. Now, we compute and pass the recovered boundary flux rather than the
finite element flux, i.e. we set vfkg ¼ rfkg in (8). We also compute a reference solution with a higher order method for com-
parison. In Table 2 we compare the L2 errors in the velocity, pressure and temperature fields on a series of uniform meshes
that align along the interface. Using the recovered boundary flux restores the optimal cubic order of convergence for each
velocity and temperature component.

In [22], a similar a posteriori error analysis is applied to an operator decomposition approach for a system of elliptic equa-
tions coupled through an interface. We proved that the loss of convergence in the L2 norm is due to the transfer of the finite
element flux and can corrected by passing the recovered flux. Further, the effect of the recovered flux is accurately reflected
in the a posteriori error estimates. Error estimates that are insensitive to this effect result in over-refinement.

In this paper, we use the Taylor–Hood finite element spaces, which require additional regularity, namely
u 2 H3ðXFÞ; p 2 H2ðXFÞ; TF 2 H3ðXFÞ, and TS 2 H3ðXSÞ, to prove optimal rates of convergence in the L2 norm. Sufficient reg-
ularity can be shown for the Boussinesq approximation in R2 under certain assumptions on the data and the domain
[7,13,27,14]. To our knowledge, these results are not known for the coupled system (1) in general domains. In Appendix
A, we outline the mathematical analysis required to prove optimal rates of convergence in the case of sufficient regularity.

7. Numerical results

We now consider the flow past a cylinder as shown in Fig. 1. We solve the steady non-dimensionalized Boussinesq equa-
tions in the fluid domain,



Table 3
Numbe
dimens

Itera

1
2
3
4
5
6
7
8
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Re uH � rð ÞuH ¼ �rpH þ DuH � Pe
PrFr � Ra

Pe TH

F

� �
j;

�r � uH ¼ 0;
uH � rTH

F ¼ 1
Pe DTH

F þ QH

F ;

8><
>:
and the non-dimensional heat equation in the solid domain,
kr
Pe DTH

S ¼ QH

S ;
n

coupled by the interface conditions,
TH

S ¼ TH

F ;

kr n � rTH

S

� �
¼ n � rTH

F ;

(

where w indicates dimensionless quantities and j is the unit vector in the cross-channel direction. The non-dimensional
groups based on length scale L, velocity scale �U and a temperature non-dimensionalization TH ¼ ðT � T0Þ=DT are
Re ¼
�UL
m
; Pe ¼

�UL
j
; Pr ¼ m

j
; Fr ¼

�U2

gL
; Ra ¼ gaL3DT

mj
; kr ¼

kS

kF
;

where n points from the fluid into the solid and j ¼ kF=ðqcpÞ. We set T0 to be the temperature of the fluid at the inlet and DT
to be 1 K. Defining the velocity scale, �U, to be
�U ¼ 1
L

Z L=2

�L=2
uðx̂; yÞdy;
for any �3 6 x̂ 6 5, and for a blockage ratio, B ¼ d=L ¼ 0:5, the computational study by Chen et al. [15] indicates that in the
absence of buoyancy effects, the critical Reynolds number at which the steady symmetric flow becomes unstable at a Hopf
bifurcation point exceeds 100.

To model the flow of water past a heated cylinder made from aluminium alloy, we set
Pr ¼ 6:7833; Pe ¼ 5:0875� 102; Fr ¼ 4:5918� 10�3; kr ¼ 200:
The Reynolds number, as determined by the average inflow velocity, is 75. The fluid enters the domain with a non-dimen-
sional temperature of 0, and we apply adiabatic boundary conditions on the top, bottom, and outflow boundaries. The solid
cylinder has a hole in center which is maintained at a constant temperature one degree above the inflow temperature, giving
a Rayleigh number of Ra ¼ 2:8336� 104.

To estimate the average temperature in a region one channel diameter behind the center of the cylinder, we define
wTF
¼ 10

p
expð�10ðx� 1Þ2 � 10y2Þ:
We use the error indicators given by (18) and (19) to adaptively refine the discretizations in order to reduce the error in the
average temperature of the solid to 0.1%.

In Table 3 we give the number of degrees of freedom, the dynamic component tolerance, the estimated linear functional,
the estimated error, and the effectivity ratio for each iteration of the iterative scheme. The effectivity ratio is the estimated
error divided by the true error, where the true error is approximated using a higher order approximation on a finer mesh. The
individual components of the total error are provided in Table 4. The iterative component of the error is negligible since the
Operator Decomposition Finite Element Method (Algorithm 2) is iterated until convergence at each step of the refinement
algorithm.

We observe that the transfer component of the error dominates the total error. Note that the error can be negative since
we are estimating the error in a linear functional. The component tolerance is initially much higher for the fluid mesh since
r of degrees of freedom, component error tolerance, estimated average temperature in the solid, estimated error, and effectivity ratio for the non-
ional flow past a heated cylinder using the finite element flux.

tion NF NS TOLF TOLS Est. Fctl. Estimated error Effectivity

5609 658 8.67E�4 1.33E�4 0.1270 1.14E�2 1.04
6541 840 8.86E�4 1.14E�4 0.1349 3.29E�3 1.05

19921 957 9.54E�4 4.58E�5 0.1283 9.72E�3 0.99
19921 1135 9.46E�4 5.39E�5 0.1367 1.37E�3 1.04
19921 1446 9.32E�4 6.77E�5 0.1370 1.07E�3 1.02
19921 1591 9.26E�4 7.40E�5 0.1372 8.96E�4 1.02
19921 1737 9.20E�4 8.02E�5 0.1380 1.09E�4 1.02
19921 2391 8.93E�4 1.07E�4 0.1381 1.18E�5 0.96



Table 4
Errors for the non-dimensional flow past a heated cylinder using the finite element flux.

Iteration Fluid discretization Solid discretization Transfer Projection Total

1 6.09E�3 �6.39E�5 5.42E�3 �7.55E�6 1.14E�2
2 1.27E�4 �1.63E�5 3.22E�3 �4.64E�5 3.29E�3
3 �4.37E�5 �1.38E�5 9.87E�3 �9.63E�5 9.72E�3
4 �4.57E�5 �3.70E�6 1.51E�3 �9.01E�5 1.37E�3
5 �4.38E�5 �2.23E�6 1.16E�3 �4.26E�5 1.07E�3
6 �4.47E�5 �2.68E�6 9.47E�4 �4.09E�5 8.96E�4
7 �4.57E�5 �1.15E�6 1.59E�4 �2.83E�6 1.09E�4
8 �4.58E�5 9.43E�7 6.16E�5 �3.14E�6 1.18E�5
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more degrees of freedom are associated with the fluid. As the solid mesh is refined, the number of degrees of freedom in the
solid increases and the component tolerances become much closer.

For comparison, in Table 5 we provide the number of degrees of freedom, the dynamic component tolerance, the esti-
mated linear functional, the estimated error, and the effectivity ratio when the recovered flux is passed. The individual com-
ponents of the total error are provided in Table 6. We note that the transfer error has been greatly reduced, and the number
of refinement iterations has also been reduced. Upon further inspection, we see that this is due to a fortuitous cancelation of
the discretization and projection errors in the second iteration, eliminating the need for further adaptive refinements. This
cancelation is the reason why only approximately one-third of the number of elements are required in the fluid domain as
compared to the previous computation.

The final adaptive fluid mesh when using the finite element flux is given in Fig. 5. The adaptive scheme concentrates mesh
refinement around the cylinder, in the recirculation zone, and directly upstream of the cylinder. The solution further down-
stream of the cylinder can be computed with less accuracy, as is shown by the coarser mesh. This is reminiscent of previous
adaptive results for flow past a cylinder in [3,2]. The difference here is that our approach takes into account the interaction
and the transfer of errors between the solid and the fluid.

In Fig. 6(a), we show the mesh produced by the adaptive strategy within the solid when using the finite element flux.
Adaptivity is concentrated at the boundary due to the transfer error. For comparison, we also give the ‘‘adaptive” mesh when
the recovered boundary flux is used Fig. 6(b). No refinement is necessary in this case since the transfer error has been greatly
Table 6
Errors for the non-dimensional flow past a heated cylinder using the recovered flux.

Iteration Fluid discretization Solid discretization Transfer Projection Total

1 6.14E�3 �1.69E�6 0 3.03E�6 6.14E�2
2 1.13E�4 �1.35E�6 0 �1.75E�4 �6.32E�5

−3 −2 −1 0 1 2 3 4 5

−0.5

0

0.5

Fig. 5. Final adaptive mesh in the fluid.

Table 5
Number of degrees of freedom, component error tolerance, estimated average temperature in the solid, estimated error and effectivity ratio for the non-
dimensional flow past a heated cylinder using the recovered flux.

Iteration NF NS TOLF TOLS Est. Fctl. Estimated error Effectivity

1 5609 658 8.67E�4 1.33E�4 0.1323 6.14E�3 1.06
2 6710 658 9.11E�4 8.93E�5 0.1381 �6.32E�5 1.33
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Fig. 6. Final adaptive mesh in the solid: (a) when the finite element flux is passed and (b) when the recovered boundary flux is passed.
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reduced. The refinement in the fluid mesh is qualitatively similar (even though it contains only one-third of the number of
elements) and has been omitted for the sake of brevity.
8. Conclusion

We carry out an a posteriori error analysis of an multiscale operator decomposition finite element operator method
for a multi-physics conjugate heat transfer problem. We adapt the a posteriori approach based on variational analysis,
residuals and the generalized Green’s function to derive accurate error estimates which are then used to guide adaptive
mesh refinement. Modifications to the standard error analysis account for the transfer of error between components of
the decomposed operator, interpolation error, and error arising from iterative solution. The analysis clearly identifies the
lower order accuracy of the transferred gradient information as the reason for the loss of accuracy with respect to mesh
size that is observed in the operator decomposition method. We adapt a boundary flux method to postprocess the solu-
tion and so recover the lost accuracy.
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Appendix A. Optimal L2 error bounds

Given an appropriate choice of data for the adjoint problem (12), the a posteriori error estimate (17) can be used to derive
a bound on the L2 error if the solution to (1) and (12) are sufficiently smooth. As discussed in Section 6.2, such regularity
results exist only for a limited range of problems for the Boussinesq approximation [7,13,27,14]. Nevertheless, the error rep-
resentation can be broken down into four terms, each containing one or more of the following errors: discretization, projec-
tion, iteration, and transfer. From this decomposition of the error representation, it is immediately clear that the transfer
error will be the asymptotically dominant component if the solutions are sufficiently smooth.

Let u; p; TF and TS solve (1), and ufkgh ; pfkgh ; TfkgF;h and TfkgS;h be the finite element solutions from the operator decomposition
method at the kth iteration. Let /; z; hF and hS solve the adjoint problem (12) with wu ¼ 0; wp ¼ 0; wTF

¼ eTF =keTF kXF
and

wTS
¼ eTS=keTSkXS

. Starting with (17), integration by parts over each element K gives
keTFkXF
þ keTSkXS

¼ I1 þ I2 þ I3 þ I4;
where
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I1 ¼
X

K2sF;h

R1ðufkgh ;pfkgh ; TfkgF;h Þ;/� pV/
	 


K
þ 1

2
l
@ufkgh

@n

" #
;/� pV/

 !
@K

þ
X

K2sF;h

R2ðufkgh Þ; z� pZz
	 


K

þ
X

K2sF;h

R3ðufkgh ; TfkgF;h Þ; hF � pWF hF

	 

K
þ 1

2
½kFðn � rTfkgF;h Þ�; hF � pWF hF

	 

@K
þ
X

K2sS;h

R4ðTfkgS;h Þ; hS � pWS hS

	 

K

þ 1
2
½kSðn � rTfkgS;h Þ�; hS � pWS hS

	 

@K
;

I2 ¼ kFðn � rTfkgF;h Þ; hF � pWF hF

	 

CI

� kSðn � rTfkgS;h Þ; hS � pWS hS

	 

CI

;

I3 ¼ kSðn � rhSÞ; TfkgS;h � TfkgF;h

	 

CI

;

I4 ¼ vfkg;pWF hF
� �

CI
� rfkg;pWS hS
� �

CI
;

with ½�� denoting the jump across an element edge and
R1 ufkgh ;pfkgh ; TfkgF;h

	 

¼ f þ lDufkgh � q0ðu

fkg
h � rÞu

fkg
h �rpfkgh � q0bTfkgF;h g;

R2ðufkgh Þ ¼ r � u
fkg
h ;

R3ðufkgh ; TfkgF;h Þ ¼ Q F þ kFDTfkgF;h � q0cpðufkgh � rTfkgF;h Þ;

R4ðTfkgS;h Þ ¼ Q S þ kSDTfkgS;h :
The first term, I1, is the standard a posteriori weighted residual at the kth iteration. This term does not contain any transfer
or, iteration error, and therefore is not affected by non-matching triangulations along the interface. If the solution to (1) and
the adjoint solutions are sufficiently smooth, then standard techniques (see e.g. [16,17,22]) can be used to show the optimal
rate of convergence for I1 if the mesh is quasi-uniform.

The second term, I2, represents the jump term along the interface arising after integration by parts on the elements adja-
cent to the interface. We split this term into three components,
I2 ¼ vfkg;pWS hS � pWF hF
� �

CI
þ kFðn � rTfkgF;h Þ � vfkg; hF � pWF hF

	 

CI

þ vfkg � kSðn � rTfkgS;h Þ; hS � pWS hS

	 

CI

:

The first component is a projection error which is zero if the triangulations match along the interface. Otherwise, if the solu-
tion to (1) and the adjoint solutions are sufficiently smooth, then the projection error can be bounded using standard tech-
niques, although the convergence rate will be slightly slower as compared with the previous terms as is expected for non-
matching interface triangulations [22,30]. The second and third components can be bounded using the same regularity
assumptions and techniques as for the jump terms in I1 and will converge at the same rate.

The third term, I3, represents the discontinuity in the temperature field along the interface. We split this term into two
components,
I3 ¼ kS n � rhSð Þ; TfkgS;h � pWS TfkgF;h

	 

CI

þ kS n � rhSð Þ;pWS TfkgF;h � TfkgF;h

	 

CI

:

The first component is an iterative error and can be driven to zero by increasing the number of iterations. The second com-
ponent is a projection error which is either zero (in the case of matching triangulations), or can be bounded using the same
regularity assumptions and techniques as above with a slightly suboptimal rate of convergence.

Finally, the fourth term, I4, represents the difference between the numerical flux passed from XS to XF and the flux ob-
tained via the boundary-flux correction technique. We split this term into two components,
I4 ¼ vfkg � rfkg;pWF hF
� �

CI
þ rfkg;pWF hF � pWS hF
� �

CI
:

The first component will be zero if the flux from the boundary-flux correction technique is transferred. If the finite element
flux is transferred, then convergence rate for I4 will be dominated by the error in the finite element flux, which typically con-
verges one order lower than the previous terms. The second component is a projection error and can be treated similar to the
other projection errors with the same suboptimal rate of convergence.
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